

Vulnerability Assessment and Penetration Testing

Report for Jeansrs Web Application

Project Name Jeansrs

Start & End Dates 12/Oct/2023 - 13/Oct/2023

Analyst Name InfoSec Team

Email secure@orangemantra.in

Website https://www.jeansrs.com/

Place Gurugram, Haryana

Website Health State (Security) High

Suggested Remediation Time As Soon As Possible

mailto:secure@orangemantra.in

SUMMARY OF FINDINGS

Risk Count

Critical 1

High 4

Medium 4

Low 4

Total 13

Vulnerability or Condition Type Risk Severity Retest Status

1

Session Hijacking via
PHPSESSID

Manipulation
Critical Critical

2
Input Validation

Bypass
High High

3
Browser Back Button

Vulnerability
High High

4 Directory Indexing High High

5 Open Redirection High High

6
MISSING SECURITY

HEADERS
Medium Medium

7 Banner Grabbing Medium Medium

8 CORS Medium Medium

9 DMARC Record Not
Found

Medium Medium

10
Additional Security

Measures
Low Low

11
Known Vulnerable

components
Low Low

12 TLS Weak ciphers Low Low

13
Missing HTTP only
and secure flag in
cookie (Session Id)

Low Low

DETAILED FINDINGS

Finding #1: Session Hijacking via PHPSESSID Manipulation

Risk

Critical

Severity

Critical

Affected Components

Website

Details

This bug report addresses a critical vulnerability in the session management system of our
application, which allows for session hijacking through PHPSESSID manipulation. This
report provides a detailed overview of the bug, its potential impact, and recommended
remediation measures.

The identified vulnerability poses significant risks and can have the following impacts:

a) Unauthorized Access: Attackers can exploit the bug by manipulating the
PHPSESSID value, gaining unauthorized access to other user accounts. This can
result in unauthorized actions, data exposure, and potential misuse of user
accounts.

b) Data Breach: Session hijacking can lead to the exposure of sensitive user data,
including personal information, financial details, and confidential records. This can
have severe consequences for both users and our organization, including legal and
regulatory implications.

c) Reputational Damage: Failing to protect user sessions and allowing unauthorized
access undermines user trust in our application. The resulting reputational damage
can have long-lasting negative effects on our brand and business.

Suggested Remediation

To address the session hijacking vulnerability, the following remediation measures are
recommended:

a. Implement Strong Session Management:

• Generate random, unique session IDs that are resistant to guessability or
manipulation.

• Associate session IDs with user IDs and validate their consistency during
authentication and authorization processes.

• Consider implementing session regeneration after successful authentication.

• Enforce session expiration to limit the lifespan of user sessions.

b. Ensure Secure Transmission and Storage:

• Transmit session IDs securely over HTTPS to protect them from interception.

• Encrypt or hash session IDs when storing them in databases or other persistent
storage to prevent unauthorized access.

Screenshot 1:-

Screenshot 2:

Screenshot 3:

Finding #2: Input Validation Bypass

Risk

High

Severity

High

Occurrences

Multiple

Details

It was Observed that Form inputs are not filtering user inputs, An input validation attack
occurs when an attacker deliberately enters malicious input with the intention of
confusing an application and causing it to carry out some unplanned action. Malicious
input can include code, scripts and commands, which if not validated correctly can be
used to exploit vulnerabilities.

Suggested Remediation

It is recommended to implement filter special characters such as <> ,() , / , SCRIPT tags as
these are not currently filtered so as to prevent Injection Attacs

Screenshot: 1

Screenshot 2:-

Finding #3: Browser Back Button Vulnerability

Risk

High

Severity

High

Occurrences

Multiple

Details

The browser back button vulnerability, also known as "session fixation" or "session

riding," is a type of web application security issue where an attacker can manipulate a

user's session and gain unauthorized access to an account or perform actions on behalf of

the user.

This vulnerability occurs when a web application fails to properly manage session tokens

or lacks adequate security controls. Attackers can exploit this vulnerability in the following

ways:

• Session Fixation Attack: An attacker can set a session token and trick a victim into

using that token, potentially gaining access to the victim's account.

• Unwanted Actions: Attackers can use a victim's session to perform unwanted

actions, potentially altering data or settings.

Suggested Remediation

To mitigate the browser back button vulnerability, follow these remediation steps:

• Generate Secure Session Tokens:

❖ Implement a robust session token generation mechanism that ensures

unpredictability and randomness.

• Session Expiration:

❖ Set a session timeout and automatically invalidate sessions after a period

of inactivity. This limits the window of opportunity for attackers.

• Regenerate Session Tokens:

❖ Generate new session tokens upon critical actions (e.g., login) or when

privilege levels change. This prevents attackers from using previously

captured tokens.

• Session Management:

❖ Implement secure session management practices and controls. Always

regenerate the session ID upon login or privilege elevation.

• Secure Transmission:

❖ Ensure session tokens are transmitted over secure, encrypted channels

(HTTPS) to prevent eavesdropping.

• Logout Functionality:

❖ Implement a proper logout functionality that invalidates the session token

and prevents its reuse.

• Session Fixation Protection:

❖ Protect against session fixation attacks by regenerating the session token

upon login, changing privilege levels, or any other critical actions.

• Client-Side Security Headers:

❖ Implement security headers like the SameSite attribute in cookies to

restrict cross-origin access.

Screenshot: 1

Screenshot 2:

Screenshot 3:

Finding #4: Directory Indexing

Risk

High

Severity

High

Occurrences

Multiple

Details

Web servers can be configured to automatically list the contents of directories that do not have an

index page present. This can aid an attacker by enabling them to quickly identify the resources at a

given path and proceed directly to analyzing and attacking those resources. It particularly

increases the exposure of sensitive files within the directory that are not intended to be accessible

to users, such as temporary files and crash dumps. Directory listings themselves do not

necessarily constitute a security vulnerability. Any sensitive resources within the web root should

in any case be properly access-controlled and should not be accessible by an unauthorized party

who happens to know or guess the URL. Even when directory listings are disabled, an attacker may

guess the location of sensitive files using automated tools.

Suggested Remediation

There is not usually any good reason to provide directory listings and disabling them may place

additional hurdles in the path of an attacker.

This can normally be achieved in two ways:

1. Configure your web server to prevent directory listings for all paths beneath the web root.

2. Place into each directory a default file (such as index.htm) that the web server will display

instead of returning a directory listing.

Screenshot: 1

Finding #5: Open Redirection

Risk

High

Severity

High

Occurrences

Multiple

Details

An open redirection vulnerability can be exploited by attackers to craft phishing attacks, deceive

users into visiting malicious websites, and potentially compromise their security. Although the

impact is limited in this scenario, it is crucial to fix the vulnerability to prevent potential risks.

Steps to Reproduce:

• Access the website and initiate a legitimate request.

• Observe the request, particularly the URL, and locate the parameter that can be modified.

• Modify the parameter's value from GET / HTTP/1.1 to GET http://evil.com HTTP/1.1.

• Submit the modified request.

Suggested Remediation

http://evil.com/

I recommend addressing this vulnerability by implementing proper input validation and security

controls on the affected parameter. Ensure that any redirects are restricted to internal or trusted

domains and do not allow redirection to arbitrary external sites. Furthermore, consider

implementing output encoding to prevent any injected malicious code from executing.

Screenshot: 1

Screenshot 2:

Finding #6: Missing Security Headers

Risk

Medium

Severity

Medium

Details

There are some headers that protect the application against attacks. These headers are
not implemented in the application.

1. HTTP Strict Transport Security
2. Content Security Policy
3. Access-Control-Allow-Origin
4. X-XSS-Protection
5. Referrer policy

Suggested Remediation

There are some headers that protect the application against attacks. These headers are
not implemented in the application.

1. HTTP Strict Transport Security
2. Content Security Policy
3. Access-Control-Allow-Origin
4. X-XSS-Protection
5. Referrer policy

Screenshot 1: -

Finding #7: Banner Grabbing

Risk

Medium

Severity

Medium

Details

It is observed that Apache version and Operating system has been disclosed in the
response headers. This will help Attacker to Gather Information on the application server
to launch Attacks from the public available exploits from Vulnerability Database.

Suggested Remediation

It is recommended to Hide Apache and Os version from /etc/apache2/conf-
enabled/security.conf.

Screenshot: 1

Finding #8: CORS (Cross-Origin Resource Sharing)

Risk

Medium

Severity

Medium

Details

Cross-origin resource sharing (CORS) can be understood as a controlled relaxation of the
same-origin policy. CORS provides a controlled way to share cross-origin resources. The
CORS protocol works with specific HTTP headers that specify which web origins are
trusted and their associated properties, such as whether authenticated access is
permitted. These parameters are expressed in HTTP header exchanges between a
browser and the cross-origin website it’s attempting to access.

Suggested Remediation

The solution is to prevent the vulnerabilities from arising in the first place by properly
configuring your web server’s CORS policies.

1. Specify the allowed origins
2. Only allow trusted sites
3. Don’t whitelist “null”
4. Implement proper server-side security policies

Screenshot 1: -

Finding #9: DMARC Record Not Found

Risk

Medium

Severity

Medium

Affected Components

Whole Website

Details

It was observed that this domain does not email security implemented

Suggested Remediation

Please implement DMARC for mail security

Screenshot: 1

Finding #10: Additional Security Measures

Risk

Low

Severity

Low

Details

Exposing web applications like phpMyAdmin, Adminer, and Swagger UI to the public can lead to

various security risks and vulnerabilities, including:

• Disclosure of Sensitive Information: Phpinfo pages reveal details about the PHP

installation, potentially aiding attackers in identifying vulnerabilities.

• Brute-Force Attacks: Publicly accessible phpMyAdmin pages become targets for

automated brute-force attacks to gain unauthorized access.

• Exploitation of Known Vulnerabilities: Attackers may exploit known vulnerabilities in

older versions of phpMyAdmin and related software.

• Unauthorized Access: Successful exploitation of vulnerabilities or weak authentication

mechanisms can result in unauthorized access to your database, potentially compromising

sensitive information.

Suggested Remediation

To enhance the security of your web applications, consider implementing the following

additional measures:

• Restricted Access:

❖ Place Behind Secure Login: Limit access to phpMyAdmin, Adminer, and

Swagger UI by placing them behind a secure login page.

❖ IP Restriction: Restrict access to specific IP addresses or IP ranges to ensure

only authorized users can access these applications.

• Strong Authentication:

❖ Complex Passwords: Configure strong and complex passwords for login

credentials of phpMyAdmin and Adminer.

❖ Two-Factor Authentication (2FA): Enable 2FA if supported by the

applications for an additional layer of security.

• Update to Latest Versions:

❖ Regularly update phpMyAdmin, Adminer, and PHP to the latest stable

versions to patch known vulnerabilities, reducing the risk of exploitation.

Screenshot: 1

Sceenshot 2:

Screenshot 3:

Finding #11: Known Vulnerable components

Risk

Low

Severity

Low

Affected Components

Angular js, Moment js and jQuery is affected

Details

It was observed that jQuery Ui version, angular js and moment js version is outdated

Suggested Remediation

It is recommended to update Angular js, Moment js and jQuery version to the latest to prevent
future attacks on the application

Screenshot: -

Screenshot 2 :

Screenshot 3:

Finding #12: TLS Weak Ciphers

Risk

Low

Severity

Low

Details

It was observed that website has using weak ciphers

Suggested Remediation

It is recommended to implement the strong ciphers instead of weak ciphers

Screenshot 1: -

Finding #13: Missing HTTP only and secure flag in cookie

Risk

Low

Severity

Low

Affected Components

Session ID

Details

HTTP Only is an additional flag included in a Set-Cookie HTTP response header. Using the
HttpOnly flag when generating a cookie helps mitigate the risk of client side script
accessing the protected cookie

Suggested Remediation

Set-Cookie: <name>=<value>[; <Max-Age>=<Age>] `[; expires=<date>][;
domain=<domain_name>] [; path=<some_path>][; secure][; HttpOnly

Screenshot 1:

